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1.0 SUMMARY 

The objectives of this task are to increase turbine engine performance and lifetime by improving 
reliability, reducing cooling flows, increasing turbine efficiencies, increasing thrust to weight 
ratio, and reducing turbine engine design cycle time.   
 

To that end, the program seeks to: 

• Establish fundamental understanding of heat transfer and cooling mechanisms in gas turbine 
engines; provide an understanding of the effects of unsteady and free stream turbulence on 
turbine blade heat transfer; improve the accuracy of heat transfer predictions and 
computations; and develop concepts and strategies for the control of turbulent heat transfer. 

• Investigate turbine flow control for reduction of secondary flow losses; reduction of losses 
associated with low Reynolds number separated flows; control of flow areas, flow direction, 
and airfoil circulation.  Investigate technologies for turbine flow control, including passive 
and active fluidic, mechanical, and electromagnetic actuation. 

• Transition basic research results to the gas turbine industry and to Improved High 
Performance Turbine Engine Technology (IHPTET) and Versatile Affordable Adaptive 
Turbine Engines (VAATE) Technology Demonstrations.   
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2.0 RESEARCH RESULTS 

2.1. Heat Transfer and Film Cooling Research 

The primary source or error in the prediction of heat transfer and film cooling effectiveness in 
the turbine engine hot section is the inability to accurately model the effect of the highly 
unsteady environment found inside the turbine engine.  Unsteadiness affecting the turbine 
section ranges from large scale, high amplitude, coherent unsteadiness due to shocks and wakes 
from upstream components down to fine scale isotropic turbulence.  Unsteadiness across this 
wide range of amplitudes, scales, and frequencies significantly affect the development of the 
boundary layers on the hot section components, often in very complex ways.  Understanding 
these complex interactions, and validating computational models of them, requires carefully 
executed precision measurements of heat transfer and film cooling under well defined unsteady 
forcing.   
 
Initial experiments under this program were performed using a wall jet facility (essentially a 
long, instrumented flat plate with a high speed rectangular jet blown along it) in order to produce 
a boundary layer with very high levels of unsteadiness outside the boundary layer.  Hot wire 
anemometers and pitot-static pressure instrumentation were used to quantify the boundary layer 
and external flow fluid mechanical properties.  Fast response thermocouples were used to 
quantify the flow temperatures and measure the response of the wall temperature to rapid 
changes in the external temperature.  The wall temperature response, combined with knowledge 
of the thermodynamic properties of both the boundary layer flow and the wall, were used to 
extract the heat transfer coefficient under various flow conditions at various points under the 
boundary layer.  The major findings of these experiments were that the levels of turbulence that 
exist in high pressure turbines from wakes, upstream disturbances, film cooling, horseshoe 
vortices and secondary flows results in levels of 10-20%.  The initial wall jet experiments 
showed augmentation of heat transfer by factors of 2 to 4.  Previous experiments on the effects of 
turbulence on heat transfer showed only marginal effects for levels of 1-6% and this is because 
the near wall shear layer of a “fully turbulent” boundary layer already has a peak in turbulence of 
typically 8-10% so these free stream levels of 1-6% had little effect - but the wall jet, with 
increased levels of 10-20%, had significant increases in heat transfer.  Correlations of the wall 
heat flux from high response series thermopiles with the free stream fluctuations showed 
correlations of 50 to 60% indicating new physics for computations.  The turbulent Prandtl 
Number now required significant modification and these measurements and calculations were 
also accomplished in this facility for these conditions.  These initial experiments were initiated to 
explain engine measurements which showed increases of engine heat transfer by factors of three 
- 4 over that expected for a fully turbulent boundary layer as this was the highest value thought 
possible.  Detailed results from these experiments are available in publications listed in the 
appendix. 
 
After the effects of high freestream unsteadiness were quantified in the wall jet facility, model 
film cooling holes were introduced to study the interaction of film cooling with the turbulently 
driven boundary layer.  Of primary interest were the influence of the cooling film injection on 
the wall heat transfer in the vicinity of the holes and the effect of unsteadiness, both in the holes 
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and outside the boundary layer on the film cooling effectiveness (essentially a measure of how 
well the cooling flow is working).   
 
The extraction of both heat transfer and film cooling effectiveness required development of a 
three-temperature testing technique.  By setting the freestream, cooling flow, and wall to one set 
of three initial temperatures, running the test, and then repeating the same with another set of 
three initial temperatures while holding all the fluidic conditions constant, it is possible to solve a 
pair of coupled non-linear equations for both the heat transfer coefficient and the film cooling 
effectiveness coefficient.  The usefulness of these measurements was increased greatly by the 
introduction of first Thermochromic Liquid Crystals (a surface coating which changes color with 
temperature) and then accurate infrared temperature measurements which allowed simultaneous 
measurement of temperature over the entire surface, instead of just the few dozen points 
measurable with thermocouples.  One of the major findings of these experiments was that it is 
not sufficient to simply increase film cooling effectiveness.  Because of the complex coupling 
between film cooling and heat transfer, it is possible to increase film effectiveness, but at the 
same time increase heat transfer to such an extent that your overall heat transfer situation 
actually degrades.  Detailed results from these experiments are available in publications listed in 
the appendix. 
 
Later experiments sought to increase the realism of the flows studied.  Large scale coherent 
unsteadiness was added to try to emulate the sorts of aerodynamic forcing the turbine 
components see due to upstream wakes.  External pressure gradients were imposed in order to 
emulate the effects of pressure variations on the suction and pressure sides of turbine airfoils.  A 
facility was designed and built to study the influence of the high curvature and saddle-type flow 
kinematics on and near the leading edge of turbine blades.  Detailed results from these 
experiments are available in publications listed in the appendix. 
 
Most recently, experiments have been conducted to try to demonstrate how unsteadiness might 
be used to improve the performance of the cooling system.  By pulsing the film cooling flow it 
has been demonstrated that a significant reduction in film cooling mass flow (75%) at the same 
effectiveness is possible without a corresponding increase in heat transfer coefficient.  Pulsed 
film cooling has been applied to both straight, cylindrical, holes and shaped holes.   
 
A transient IR measurement was used to obtain the film effectiveness and heat transfer on a 
representative turbine leading edge with pulsed film cooling.  The transient IR technique allows 
the measurement of both film effectiveness and heat transfer coefficient using wall temperatures 
from a single transient test run.  Temperature data from two different times in the run, instead of 
two separate runs as is traditionally required for accurate transient thermochromic liquid crystal 
measurements, are used to solve the pair of coupled equations describing the evolution of the 
wall temperature.  This same technique could also be used with thermochromic liquid crystals 
but because the temperature range of available liquid crystals is so limited, accurate 
measurements are not possible.  The transient IR technique has been shown to be more accurate 
than transient LC in a direct comparison using matching flow conditions.  This is due to the 
single run, the availability of the initial temperature distribution, and the wide temperature range 
over which accurate IR measurements can be made.  
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Figure 1 shows typical transient IR measurements of the surface temperature on the cylindrical 
leading edge of a turbine blade model with pulsed injection at 10 Hz.  Measurements are shown 
for three times during a single test run.  Figure 2 shows the resulting heat transfer coefficient and 
film cooling effectiveness distributions that are obtained from processing of the IR temperature 
measurements.  
 

 
Figure 1:  Infrared Images from Transient Pulsed Heat Transfer Test 

 (a): Start of test, t = 0; (b) t = 25 sec; (c) t = 70 sec. 
 

 
Figure 2:  Pulsed Cooling Flow Reduced Data 

(a).Heat transfer coefficient (h) distribution. (b) Cooling effectiveness (η) distribution. 
 

Reduction of the duty cycle of the pulsing (ratio of the flow on time to the total cycle time), at a 
given pulse rate, reduces the mean coolant mass flow.  Current measurements have shown that 
the duty cycle can be reduced to 25% (flow on only one quarter of the time) without losing 
cooling effectiveness.  The ability to reduce film cooling flow directly translates into a 
proportional increase in turbine engine thrust.  For more details see list of publications. 
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2.2. Turbulence Model Development: 

The primary focus of this task was to obtain detailed experimental measurements of the 
aerothermodynamics of turbine related flows under highly unsteady conditions for use by 
researchers outside of the organization to develop models.  There was some successful model 
development under this task however.  Edward Michaels, while working on his Doctoral 
Dissertation, developed a very accurate two-scale turbulence model for the prediction of heat 
transfer and skin friction under high freestream turbulence conditions.  He was able to predict 
these parameters to within 2%, an accuracy not provided by any other current models.  Outside 
organizations have picked up this model and are working on extending and applying it. 
 
2.3. Aerodynamic Flow Control 

The aerodynamic loading and efficiency of the turbine components play a large role in the 
overall efficiency and power output of the the gas turbine engine.  The low pressure turbine 
presents significant opportunities for improvements in this regard.  A typical commercial aircraft 
turbine engine or ground power unit can have anywhere between five and twelve low pressure 
turbine stages.  Low bypass engines used in high performance military engines will typically 
have two to four stages.  Increasing blade loading allows for significant reduction in part count, 
and has the potential to allow the removal of whole stages of the low pressure turbine module, 
which translates into signficant weight, performance, and cost savings.   
 
The primary obstacle to increasing loading is maintaining efficiency.  For the low pressure 
turbine a major cause of loss of efficiency is flow separation on the rear of the turbine airfoil, 
where there is a strong adverse pressure gradient..  Controlling this separation requires 
reenergizing the boundary layer flow in order to make it more separation resistant.  There are 
many techniques for accomplishing this, but they can be separated into two broad categories: 
active techniques, which rely an the application of external energy; and passive techniques, 
which rely on making fixed surface or profile modifications to the airfoil in order to influence the 
boundary layer.  Both passive and active separation control techniques were studied under this 
work unit, in cooperation with work performed under work units 2302NP01 and 2307NP01. 
 
2.3.1.  Passive Boundary Layer Contol 

Passive separation control techniques studied include suction side v-grooves, slots, trips, 
turbulators, and spherical and asymmetric dimples.  Of the passive techniques studied, the 
dimples proved to be the most effective at flow separation while cause a minimum of adverse 
affects on the airfoil loss characteristics.  Figures 3a and 3b show a computation of the flow over 
a single row and a double row of spherical dimples respectively.  The effect of the dimples is to 
generate a streamwise vortex pair in the boundary layer near the wall.  This vortex pair serves to 
pump high energy fluid from outside the boundary layer down into the boundary layer near the 
wall, energizing the boundary layer.  It also serves to trip a laminary boundary layer, speeding 
transition to turbulence, which again increases the boundary layer’s resistance to separation.  
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Figure  3:  Computed Flow Over Spherical Dimples 

 Suction side of a low pressure turbine airfoil with spanwise periodic boundary conditions. (a) 
Single row of dimples.  (b) Double row of dimples. 

 

2.3.2.  Active Boundary Layer Control: Vortex Generator Jets 

A number of active boundary layer control actuators were considered for study, including 
Helmholtz resonators, micro-electro-mechanical devices (MEMS), thermal actuators, plasma 
actuators, and Vortex Generator Jets (VGJs).  The last, VGJs, were chosen to be the focus of 
study because of their proven effectiveness in external flows, and because of their physical 
similarity to the film cooling technologies already found in gas turbine engines.  More recent 
work has examined the use of plasmas for forcing.  That work will be discussed in the next 
section.  
 
Vortex Generator Jets are small jets that are injected through the airfoil surface into the boundary 
layer.  VGJs are typically configured with a low pitch angle (30-45 degrees) and aggressive skew 
angle (45-90 degrees) to the local freestream flow direction.  Here pitch angle is defined as the 
angle the jet makes with the local surface and skew angle is defined as the angle of the projection 
of the jet onto the surface relative to the local freestream direction.  In this skew configuration, 
the VGJ creates a horseshoe vortex pair with one very strong leg accompanied by a weak leg of 
opposite sign.  The result is a single, dominant, slowly-decaying streamwise vortex downstream 
rather than the two weaker counter-rotating horseshoe vortices generated by a jet with 0 degrees 
skew or a symmetric passive boundary-layer obstruction. It has been shown that this single-sign 
vortex energizes the separating boundary-layer by effectively bringing high momentum 
freestream fluid down to the wall.  
 
Figure 4 shows the effect of VGJ blowing on the pressure loss though low pressure turbine 
cascade at low Reynolds number.  The blowing ratio is the ratio of the momentum flux per unit 

(a) 
 
 
 
 
 
 
 
(b) 
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area exiting the VGJ to the momentum flux per unit area of mid-channel flow outside the hole.  
At a blowing ratio of 0 (no flow through the VGJs) the flow over the LPT is separated and the 
loss coefficient (a normalized measure of the energy lost going though the cascade) is large.  
Once the blowing ratio is increased above a certain critical value, here approximately B=1.0 for 
steady blowing, the flow separation is greatly reduced and the loss is cut by approximately 60%.  
 
Also shown on Figure 4 are the results for pulsed VGJs.  Here the jet flow is turned on 
periodically for only a fraction of the total cycle time.  The effect is to greatly reduce the 
required mass flow from the VGJs.  As can be seen in Figure 4, a pulsed VGJ with an effective 
average blowing ratio of B=0.02 still effectively suppresses the separation and drives the losses 
down by 60%.  Detailed results from these experiments are available in publications listed in 
appendix A. 
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Figure 4:  Effect of Vortex Generator Jet (VGJ) Blowing on Loss 

Low pressure turbine blade pressure loss coefficient, steady and unsteady VGJ flow. 
 

2.3.3.  Active Boundary Layer Control: Atmospheric Plasmas: 

Work on flow control using plasma discharges has recently begun and has demonstrated a 
significant ability to modify the velocity profiles near the wall.  Multi-kilohertz double pulsed 
lasers and cameras have been acquired and used to obtain velocity measurements that resolve the 
non steady flows occurring in the high frequency pulsed plasma applications.   
 
The control of the voltage current characteristics for atmospheric glow discharges for control of 
subsonic flows has been investigated for high frequency AC and pulsed DC sources of 
excitation.  Uniform atmospheric AC glow discharges were obtained from 1 kHz to 10 kHz for 
various electrode lengths of ~26 cm, 56 cm and 78 cm.  Uniform Pulsed DC glow discharges 
were obtained with pulse widths from 22 nanoseconds to 2 micro seconds at a pulse rate of 100 
pulses/second, for electrode lengths of ~ 26 cm, 56 cm and 78 cm. Calculated pulsed discharge 
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peak power levels exceed 20-50KW.  The discharge impedance was inductively and frequency 
matched for high frequency AC excitation and resistively matched for the pulsed DC case.  The 
glow discharge with various electrode configurations has been installed in the 2D boundary layer 
tunnel and boundary layer and PIV measurements initiated.  Figure 5 shows PIV boundary layer 
profiles with and without plasma at low freestream velocities with an augmentation of the wall 
velocity to ~ 3.3 m/s.  Boundary layer traverses with freestream velocities of 2.5, 4, 5.8, 18.5m/s, 
indicate a decreasing % augmentation of the wall δP/P.  The PIV laser and camera were 
upgraded to provide kHz double pulse capability for resolution of the plasma discharges and the 
pulsed vortex generator jets.   Shown below are the u and v velocity profiles averaged 
correlations from hundreds of PIV individual images with plasma on (dashed) plasma off (solid).  
The v component shows a very large component just downstream of the electrodes.  The 
capability to extend these averages to several thousand frames and perform phase locked PIV 
with discharge voltages / currents can now be accomplished.   
 

 
Figure 5: Boundary Layer Velocity Profiles 

Profiles of u (streamwise) and v (wall normal) boundary layer velocity without (solid) and with 
(dashed) plasma discharge forcing, U∞ =1.0 m/s 

 

2.4.  Engine LPT application 

The Low Reynolds number low pressure Turbine work is progressing to investigation of 
application of Dimples to the low pressure turbine of an existing turbine engine, to correct for 
losses incurred at altitude.  Three sets of scaled up cascade blades were fabricated: first vane, 
first rotor, and third rotor, Figure 6. In 2005 and 2006 these were run in back to back tests 
without and with dimples in the linear cascade to determine the relative importance of individual 
stage losses  
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In addition, dimples have been machined on two high pressure turbine first vanes, Figure 5. 
Pressure transducers for the Turbine Research Facility’s (TRF) rakes were upgraded for the 
Reynolds number range of interest.  Initial tests TRF tests were run in 2004 and 2005 at nine 
Reynolds numbers with a rainbow array of HPT vanes.  The array included 3 dimpled vanes, two 
rough vanes, and six clean vanes.  A high Reynolds number TRF wake traverse of the rainbow 
array is illustrated in Figure 8.  
.                                                      

                          
 

Figure 6: Engine LPT Cascade Blades               Figure 7: Dimpled HPT Vanes for TRF 
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Figure 8: TRF Wake Traverse of Dimples on Roughened Vanes  
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The TRF will be used to evaluate full scale engine LPT hardware.  A non-flight worthy three 
stage LPT for the existing engine has been obtained and has been inspected and refurbished for a 
back to back test without and with Dimples.  Funding for modification of TRF and the required 
instrumentation has been obtained and construction is continuing. 
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3.0 CONCLUSIONS 

This project has provided a broad ranging contribution to a variety of technologies related to gas 
turbine engines.  The results have substantially added to the understanding of high heat transfer 
in the presence of very high unsteadiness, as well as film cooling effectiveness in similar 
environments.  Research performed under this project has also added to the understanding of 
high lift turbine aerodynamics and the mitigation and control of losses associated with both high 
lift and low Reynolds number turbine operations.        
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LIST OF ACRONYMS 

Acronym Description 
 
IHPTET Improved High Performance Turbine Engine Technology 
 
TRF  Turbine Research Facility 
 
VAATE Versatile Affordable Adaptive Turbine Engines 
 
VGJ  Vortex Generator Jet 
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